Nanostructured Diffraction Grating Elements fabricated by Deep UV reduction photolithography."

T. W. Mossberg, C. Greiner, D. Iazikov LightSmyth Technologies

Programmatic Facts

- Current results supported by NASA Phase I SBIR (NNG-06-LA-10C). NASA monitor: Dave Content
 - Related to gratings for Constellation X, Nexus
- Related work funded by DARPA Phase II SBIR (W31P4Q-05-CR149) DARPA monitor: Jag Shah (integrated holographic devices).

Gratings and Diffractives: Fab Methods

- Ruling
 - Relatively low line count, blazed, possible variable line spacing (1D focus)
- Interference-based fab (loosely called holographic)
 - Higher line count, blaze hard, line pattern limited by writing beams
- Present method: DUV photolithography from reticle
 - Up to 10,000 L/mm (getting higher every year)
 - Completely arbitrary line curvature and spacing (2D focus/wavefront control)
 - Blaze possible but less needed due to high line count

New fabrication approaches support functional innovation

6th Annual Mirror Technology Days in the Government September 18-20, 2006 Kirtland AFB, Albuquerque, NM

Holographic Principle (Arbitrary wavefront transformation from flat optic)

- Single flat element provides focusing/imaging PLUS dispersion
- Requirements
 - arbitrary diffractive pattern
 - resolution better than ≈λ/4 (≈100 nm visible)
 - spatial coherence over aperture
- Fabrication Approaches
 - Past interferometric exposure
 - Future Opportunity
 - compute
 - laser write
 - reduce via photolithography

Pixelated Flat Diffractive Imaging Mirrors/Gratings 26x33-mm single field, 10¹¹-10¹² design pixels

- Flat Imaging Gratings
 - Variable Line Spacing
 - dispersion (horz) plane focus
 - Curved Contours
 - Vertical plane focus
 - Multiple Coherent Facets
 - Wide spectral coverage
 - High resolution
 - Efficient use of 2D detector
- Easy to replicate
- Up to 10,000 lines/mm

- Flat Diffractive Mirrors
 - Arbitrary wavefront transformation
 - image
 - focus
 - collimate
 - spherical-cylindrical
 - off-axis
 - Replication friendly (no curved surface)
 - Optimal narrow-band signal

Photolithographic Nanofab pathway

Final Devices:

cm-scale pattern, Full spatial coherence, 50-250 nm feature size, Low-cost mass production via stepper/nanoimprint/injection molding

Laser Mask Writer – Arbitrary Pattern, Submicron Pixels

Micronic Laser Systems AB

- Write time (6" mask) 1 h 45 min
- Minimum main feature 220 nm
- Address grid 1.25 nm
- CD uniformity (global, 3 σ) 7 nm
- Registration (global, 3 σ) 15 nm

Modern DUV Reducing Stepper/Scanner

- Reduction Factor 4x (from mask)
- Resolution 65 nm
- Field Size 26 X 33 mm
- Throughput 122 wph
 300 mm wafers
 125 exposures

Focusing Diffractive Gratings

Focusing Grating Surface Profile (schematic)

Lithographically-Ruled, Flat, Complex Contour Grating (10¹¹ pixels)

Multiple functions/single optical device
- focusing + spectral dispersion

Demonstrate Flat-Focusing Grating Concept (NASA Phase I SBIR)

Diffraction-limited Focusing Demonstrated

Lithographic Flat Focusing Gratings

- First new approach to grating fab since holographic exposure (40 years)
- Arbitrary line curvature, spacing combines imaging and dispersion on flat substrate (up to 10,000 lines/mm (50-nm resolution))
- Full spatial coherence (26x33 mm field)

Patterning and Etch

Patterned Photoresist

Etched Silicon

Etched Si Deeper Etch

500 nm pitch

Blazing

- Important when grating supports multiple orders
 - Marginal importance when line spacing ≈ signal wavelength
- Blazing methods available
 - Anisotropic etch for slanted facet
 - "Corner Prism" blaze for Littrow
 - Sub-wavelength binary etch provides effective phase ramp

NASA Related Applications

- X-ray/EUV/UV gratings (Constellation-X, Nexus)
 - High Line Count
 - Variable line spacing
 - Off-axis
 - 2D focusing
- High Resolution + Broad Bandwidth (ChemCam MSL)
 - Multi-facet
 - High Efficiency

Multi-faceted Grating for LIBS Spectroscopy (ChemCam – MSL)

Multi-faceted Flat Focusing Grating with 2D detector and Universal Calibration

Summary

- Semi-conductor patterning tools open new era in grating design
 - flat substrate (Silicon or replicate to other substrate)
 - focusing
 - dispersion
 - coherent multi-faceted gratings
- Useful in multiple NASA programs
 - Constellation-X
 - Nexus
 - ChemCam-MSL (and future variations)
- Pathway to low-cost volume production via direct photolithographic patterning or via replication of master

